The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach

نویسندگان

  • Jack Singal
  • M. Shmakova
  • B. Gerke
  • R. L. Griffith
  • J. Lotz
  • J. Singal
چکیده

We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We use imaging and five band photometric magnitudes from the All-wavelength Extended Groth Strip International Survey. It is shown that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a trade-off between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added. Subject headings: techniques: photometric galaxies: statistics methods: miscellaneous

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Efficacy of Galaxy Shape Parameters in Photmetric Redshift Estimation: a Neural Network Approach

We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input...

متن کامل

Estimating Photometric Redshifts Using Support Vector Machines

We present a new approach to obtaining photometric redshifts using a kernel learning technique called Support Vector Machines (SVMs). Unlike traditional spectral energy distribution fitting, this technique requires a large and representative training set. When one is available, however, it is likely to produce results that are comparable to the best obtained using template fitting and artificia...

متن کامل

Morphology Classification and Photometric Redshift Measurement of Galaxies

Based on the Sloan Digital Sky Survey Data Release 5 Galaxy Sample, we explore photometric morphology classification and redshift estimation of galaxies using photometric data and known spectroscopic redshifts. An unsupervised method, k-means algorithm, is used to separate the whole galaxy sample into earlyand late-type galaxies. Then we investigate the photometric redshift measurement with dif...

متن کامل

Estimating the redshift distribution of photometric galaxy samples

We present an empirical method for estimating the underlying redshift distribution N(z) of galaxy photometric samples from photometric observables. The method does not rely on photometric redshift (photo-z) estimates for individual galaxies, which typically suffer from biases. Instead, it assigns weights to galaxies in a spectroscopic subsample such that the weighted distributions of photometri...

متن کامل

Estimating the Redshift Distribution of Faint Galaxy Samples

We present an empirical method for estimating the underlying redshift distribution N(z) of galaxy photometric samples from photometric observables. The method does not rely on photometric redshift (photo-z) estimates for individual galaxies, which typically suffer from biases. Instead, it assigns weights to galaxies in a spectroscopic subsample such that the weighted distributions of photometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011